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A B S T R A C T  

It is known that if f is a continuous function on the complex plane which 
extends holomorphically from each circle surrounding the origin, then f 
is not necessarily holomorphic. In the paper we prove that if, in addition, 
f extends holomorphically from each circle belonging to an open family 
of circles which do not surround the origin, then f is holomorphic. 

1. I n t r o d u c t i o n  a n d  t h e  m a i n  re su l t  

Write A(a,p)  = {~ E C: l i - a l  < p} and A = A(0, 1). I f0  < rl < r2 < c~ write 

n(a ,  r l , r~)  = { (  E C: rl ~_ I~ - al ~- r2}. We say that  a continuous function on 

bA(a,  p) extends holomorphically from bA(a, p) if it has a continuous extension 

to A(a, p) which is holomorphic on A(a, p). 

A family g of circles is called a t e s t  f ami ly  for  h o l o m o r p h y  (on C) if every 

continuous function on C that  extends holomorphically from each circle in g is 

holomorphic on C. We will consider open families of circles, that  is, families of 

the form {bA(a, p): (a,p)  E P }  where P is an open subset of C • (0, c~). 

There are large families of circles that  are not test families for holomorphy. 

For instance, the function 

{0 2/  (z e c \ {0}) 
f ( z )  = (z = 0) 

is continuous on C and extends holomorphically from each circle that  surrounds 

the origin, yet f is not holomorphic. This shows that  the family of all circles that 

surround the origin is not a test family for holomorphy. In the present paper we 
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prove that the family of all circles that surround the origin is a maximal open 

family that is not a test family for holomorphy: 

THEOREM 1.1: Let f be a continuous function on C \ {0} which extends holo- 

morphically from each circle that surrounds the origin. Suppose that, in addi- 

tion, f extends holomorphically from each circle belonging to a nonempty open 

family of circles that do not surround the origin. Then f is an entire fimction, 

that is, f is a holomorphic function on C\ {0} which has a removable singularity 

at O. 

We prove Theorem 1.1 in the first part of the paper. In the second part we 

look at special cases of nonholomorphic continuous functions on C \ {0} which 

extend holomorphically from every circle surrounding the origin. In particular, 

we consider functions constant on lines passing through the origin and functions 

constant on rays passing through the origin. 

To prove Theorem 1.1 we use a new approach to the holomorphic extension 

problem for circles which was introduced in fAG] and further developed in [G3]. 

We describe this new approach. In fAG] we studied rational functions of two 

real variables f ( z )  = P(z,-2)/Q(z,-5) where P, Q are polynomials. We noticed 

that f]bA(a, p) has a unique meromorphic extension to A(a, p) given by 

P(z,  + p2 / ( z  - a)) 
(1.1) i f ( z )  = Q(z ,~  + p2 / (z - a) ) ' 

so to say that f extends holomorphically from bA(a, p) means that f* has no 

singularities in A(a, p). Given a E C and p > 0 we introduced 

Aa,, = {(z,w) e C2: (z - a)(w --d) = p2,0 < [z - a[ < p}, 

a closed complex submanifold of C 2 \ E, attached to the real two-plane E = 

{(z,~): z E C} along the circle bAa,p = {(z,-5): z E bA(a,p)}. The holomor- 

phic extension of f from bA(a, p) to A(a, p) is then given as the restriction of 

the rational function P(z,  w) /Q(z ,  w) of two complex variables to the complex 

manifold Aa,p as seen from (1.1). 

In [G3] the varieties Aa,p were used to formulate the holomorphic extension 

problem for general continuous functions as a problem in C 2, starting from 

the trivial observation that a continuous function f on bA(a, p) extends holo- 

morphically to A(a,p) if and only if the function F(z,-5) = f (z )  defined on 

bAa,p has a bounded continuous extension to A~,p U bAa,# which is holomor- 

phic on Aa,p. If A = A(b, rl,r2), it was shown that the union ~t(A) of all Aa,p 

such that bA(a, p) C Int A surrounds b is a wedge domain attached to E along 
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.4 = {(z,5): z E A}. If f is a continuous function on A which extends holomor- 

phically from each circle bA(a, p) C A surrounding b, then by an old result of 

the author [G1], the function f is the uniform limit of a sequence of polynomials 

in z - b and 1/(5 - b) which implies that  the function F(z,5) = f (z ) (z  E A) 
has a bounded continuous extension to ~t(A) U bfl(A) which is holomorphic on 

ft(A). So, roughly speaking, continuous functions f extendible holomorphically 

from open families of circles are the functions of the form F(z,  5) which are 

the boundary values of bounded holomorphic functions F on wedge domains 

attached to E. Clearly f is holomorphic if and only if F depends only on the 

first variable. At this point one can apply standard tools of several complex 

variables. We do this to prove Theorem 1.1. 

A different formulation of the holomorphic extension problem as a problem 

in C 2 has been used by A. Tumanov IT] for continuous functions f on the strip 

{z E C: [.~z[ < 1} which extend holomorphically from each circle bA(t, 1), t �9 ~. 

Tumanov defines a function F on M = {(~ + t, ~): ( C A, t �9 I~}, the disjoint 

union of translates of the disc {((, (}: ( �9 A} in such a way that  for each t �9 I~, 

the function ~ ~ F(~+t,  ( ) ( (  �9 A) is the continous extension of~ ~ f (~+t)  to 

A which is holomorphic on A. In particular, F(~+t, ~) = f (~+t)((  �9 bA, t �9 ~). 

He observes that  since F(z,w)  = F ( z , - 1 / w ) ( w  �9 bA) one can extend F to 

~/ = {(~ + t , - 1 / ( ) :  t �9 II~,( �9 A \  {0}} by F(z,w)  =_ F ( z , - 1 / w )  to get 

a continuous CR function on the CR manifold M U .~/. He then constructs 

analytic discs attached to M U ~ / a n d  uses the Baouendi-Treves approximation 

theorem, the edge of the wedge theorem and the continuity principle to prove 

that  F does not depend on the second variable, that  is, that  f is holomorphic 

on {~ �9 C: I~r < 1}. 

2. Var ie t ies  Aa,p a n d  d o m a i n s  fl(A) 

Let 0 < rl < r2 < oo and let a E C. Denote by f~(A(a, rl,r2)) the union of all 

AD,p such that  bA(b, p) C Int A(a, rt, r2) surrounds a. The set f/(A(a, r l ,  r2)) is 

an unbounded open connected subset of C 2 \ E which is attached to E along 

A(a, r l ,  r2) = {(z,5): z E A(a, rl ,  r2)}. We shall need the following 

THEOREM 2.1 ([G3]): Let f be a continuous function on A(a, rl,r2). The 
following are equivalent: 

(i) f extends holomorphically from each circle bA(b, p) C A(a, rl ,  r2) which 
surrounds the point a; 

(ii) the function F(z,5) = f(z)  defined on {(z,5): z E A(a, rl,r2)} extends 
to a bounded continuous function on f~(A(a, r l ,  r2)) U bf~(A(a, rl, r2)) which is 
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holomorphic on ~(A(a,  rl ,  r2)). 

We list some simple properties of Aa,p and f~(A). The proofs are elementary. 

They can be found in [G3]. The proof of Proposition 2.1 can be found also in 

the earlier paper fAG]. 

PROPOSITION 2.1: Let (z, w) E C 2 \ E. Then (z, w) E Aa,n if  and only if  there 

is a t > 0 such that a = z + t(z - ~) and R = ~ l ) l z  - ~[. In fact, #yen  

R > 0 we have 

(2.1) a = z + 2-1 Ix/'1 + 4R2/[z - ~[2 _ 1](z - ~) .  

Note that the two-dimensional subspace perpendicular to the Lagrangian two- 

plane E is iE = { (z , -7 ) :  z E C}. Our next lemma tells how a variety A~,p 

intersects the two-dimensional planes perpendicular to E: 

PROPOSITION 2.2: Let z E C,t > 0 and ~ E ~. Then (z,-2) + (te i~, - t e  -i~) E 

Aa,R if  and only ira = z + x / ~  + R2e ~ .  

PROPOSITION 2.3: Let A = A(a, rl,r2). Then ~(A) is an unbounded open 

connected subset of C 2 \ E attached to E along {(z,~): z E IntA}. I f ' /  = 

(rx + r2)/2, then bfl(A) consists of ft = {(z,~): z E A} together with all Ab,; 
associated with those bA(b,'~) C A which are tangent to both bA(a, rl) and 
bA(a, r2). Further, f~(A) is a disjoint union of Ab,~ such that bA(b, 7) C Int A. 

Let zo C IntA. Let F(z0) C IntA be the circle of radius ? = (rl + r2)/2. 
which passes through z0 and whose center b(zo) lies on the line through a and 

Zo. For each F E ~ define T~(z) = zo+ei~(Z-Zo). T~ is the rotation with center 

zo for the angle ~. There is a (~(Zo), 0 < (~(zo) < ~r/2, such that T~(F(zo)) C 

IntA(-5(Zo) < ~ < 5(Zo)) and such that both Th(zo)(F(zo)) and T_5(zo)(F(zo)) 
meet bA (in fact, they meet both circles that bound A). Fix ~,-(~(Zo) < ~ < 

5(Zo). There is a 7(Zo, ~) > 0 such that 

T (r(zo)) + t b (zo)  - Zo _zo[e  ~ C IntA (0 _< t < ~-(Zo,~)) 
Ib(zo) 

while T~(F(zo))+T(Z0, ~) ( (b(zo)-Zo) / ib(zo)-  Zol)e i~ meets bA (in fact, it meets 

both circles that  bound A). For each ~ , -5 (zo )  < ~ < 5(zo), let ~(zo,~) = 

X/T(Zo, ~)2 + 2T(Z0, ~)'y. By Proposition 2.2 we have 

(zo, o) + ~[b--~o) zo l e '~ , - t  ) e fl(A) k Ib(zo) zol 
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provided that  0 < t < ~/(z0, ~). Let 

�9 } D(zo) = zole'~: 0 < t < ~l(Zo,~),-5(zo) < ~ < 5(Zo) �9 

It is easy to see that  the function 5 is continuous on Int A and that  ~/ is a 

continuous function of z0 and ~ where it is defined. For each z0 E Int A the set 

+ ; �9 D(zo)} 

is contained in ~(A). This proves 

PROPOSITION 2.4: Let zo �9 IntA. There are a neighbourhood U C E of 

(Zo,~o), an open convex cone K C C with vertex at the origin, containing 

{t(a - zo): t > 0}, and an r > 0 such that if  

P = {(4,-~):  4 �9 K, 14l < r}, 

then U + P c f~(A). 

Fix R > 0. Prom (2.1) we get that  if (z,w) �9 Aa,R then [a[ <__ I z l+2R2/[z -N[  

which, by Proposition 2.3, implies that  given r l ,  r2,0 < rl < r2 < oo, 

there are 5 > 0 and M < ec such that  
(2.2) 

{(z,w): ]z[ _< 5,[w I >_ M}  C Q(g(O, rl,r2)). 

3. F u n c t i o n s  t h a t  e x t e n d  h o l o m o r p h i c a l l y  f rom e v e r y  circle w h i c h  

s u r r o u n d s  t he  or ig in  

Suppose that  f is a continuous function on C\(0} which extends holomorphically 

from each circle that  surrounds the origin. Define F on E \ {(0, 0)} by 

F(z,~)  = f ( z ) .  

Then for each a, p such that  bA(a, p) surrounds the origin, the function FIbAa,p 

has a bounded continuous extension to Aa,pUbAa,p which is holomorphic on Aa,p. 

By Theorem 2.1 we know that  this defines a holomorphic function F on f~, the 

union of all Aa,p such that  bA(a, p) surrounds the origin. By Theorem 2.1 for 

each r l , r2 ,0  < rl < r2 < co, the restriction of F to f~(A(O,rl,r2)) is bounded 

and has a (bounded) continuous extension to ~(A(0, r l ,  r2)) U bf~(A(O, rl, r2)) 

which, on 4(0, r l ,  r2) = {(z,~): 4 e A(0, r l ,  r2)}, coincides with F(z,-2). 

We now show that  

= { (z ,w):  Iwl > Iz l}  
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One way to see this is by using Proposition 2.2. We show this by using Propo- 

sition 2.1. 

Suppose that (z, w) E C 2 \ E, that  is, w ~ ~. By Proposition 2.1 we have 

(z, w) �9 A~,p if and only if 

(3.1) a = z + t ( z -  ~ ) , p  = x / ~ +  1 ) [ z -  wl 

for some t > 0. Let L be the line through (z + ~ ) / 2  which is perpendicular to 

the line through z and ~ and let II C C be the open halfplane bounded by L 

which contains z. It is easy to see that  II is the union of all A(a, p) such that a 

and p satisfy (3.1) for some t > 0. It follows that (z.w) �9 Aam for some bA(a,p) 

that surrounds the origin if and only if 0 �9 rI, that is, if and only if IT[ > [z[. 

For each z r 0 we describe [(z,~) + iE]Ma.  Recall that  iE = {(~,-~) :  ~ �9 C}. 

Write z = [ziei% Then (z,~) + (4 , -7 )  �9 f~ if and only if [z + r < [~ - ~[, that 

is, if and only if Re(~r < 0. This happens if and only i f R e ( e - i ~ )  < 0, that  

is, if and only if ~ E ei~{z: Rez  < 0}. Let L(z) be the line through the origin 

which is perpendicular to the line through 0 and z and let P(z)  be the halfplane 

bounded by L(z) which does not contain z. Then 

[(z,~) + iE ]  Mft = (z,~) + {( r  r �9 P(z)}.  

Obviously iE N f~ = 0. Thus, f~ can be written as a disjoint union of halfplanes 

f~ = U [(z,~) + {(~,-~):  ~ �9 P(z)}]. 

Further, 

bft = (iE) U(  U {(~, -~) :  ~ �9 L(z)}). 
zeC~{O} 

Note that we cannot conclude in general that the function F extends continu- 

ously to E \ { (0, 0)}. If (z, ~) �9 E \ { (0, 0)} and if (Zn, wn) �9 f~, (Zn, W~) -+ (Z, ~), 

then l i m n - ~  F(zn, wn) = F(z, ~) = f (z)  provided that there are rl ,  ru, 0 < rl < 

r2 < c~ such that (z~,wn) �9 ~(A(O, rl,r2)) for all n. However, we have the 

following 

PROPOSITION 3.1: Let f and F be as above. Suppose that F(z ,~)  = f ( z )  

has a holomorphic extension �9 into an open ball B C C 2 \ {(0, 0)} centered at 

(zo,~oo) �9 E \ {(0,0)}. Then �9 - F on B M fk 

Proof." By Proposition 2.4 there are a neighbourhood U C E of (z0,~) ,  an 

open convex cone K C iE with vertex at the origin and an 7/> 0 such that if 
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K v = {w E K,  Iw] < ~} then U + K v C 12(A(O, r l ,  r2) N B for some r l ,  r2 ,0  < 

r l  < r2 < c~ and hence F(z , -2)  has a continuous extension from U to U U [ U + K v ]  

which is holomorphic  on U + K v. However, such extension is unique and since 

OI[U U [U + Kv]] is such an extension we must  have �9 ~ F on U + K v. Since 

(U + Kv) N B is an open subset of 12 n B and since gt n B is connected,  it follows 

tha t  �9 =- F on ~ n B.  This  completes the proof. 

4. I n t e r s e c t i n g  v a r i e t i e s  Va,p w i t h  

Given a E C and p > 0 let 

v~,~ = { (z ,w) :  ( z -  a ) ( w -  -5) = p~}. 

Thus,  Aa,p = ( ( z ,w)  E Va,p : 0  < ]Z - - a  I < p} is one of the two components  of 

Va,p \ bAa,p. We compute  Va,p N b~. The  equat ion of Va,p is w = -5+ p 2 / ( z  - a), 

so we compute  the intersection of Va,R with b~ = ((z ,  w): Iz[ = Iwl} by solving 

l -5+ p 2 / (  z - a)l  = Izl. We get I-5(z - a) + p2[ = Izl.I; - al so 

[-5(z - a) + p2].[a(~ - -5) + p2] _ p2z- 2 = z-2 = z-e[(z - a)(-2 - -5) - p2]. 

The  left-hand side equals 

a-5[(z - a) + p~/-5].[(~ - -5) + p2 /a] - p2[(z - a)(-2 - -5) + a-2 + -sz - a-5] 

: a-5(z - a)(-2 - ~) + fin _ f12 ( z  - a ) ( - z  - -5) + a-dp 2 

= (a-5 - p2)[(z - a)(~ - -5) - p2] 

and the equat ion becomes 

[z~ - (an - p2].[(z - a)(~ - ~) - p2] = 0. 

If the circle bA(a ,  p) surrounds the origin, tha t  is, if la] < p, then  the set of 

solutions is bA(a ,  p). The  case of interest  to us will be the case when ]a I > p, 

tha t  is, when b A ( a , p )  does not  surround the origin. In this case the set of 

solutions is bA(a ,  p) U bA(0, x/ia] 2 - p2). Note  tha t  these two circles intersect 

at  right angle. 

Since 

( 4 . 1 )  I~ - a l ~ [ l ~  + p 2 / ( z  _ a) l  ~ _ izl ~] = [ ( a ~  - p~ - z ~ ] . [ ( z  - a ) ( ~  - ~ )  - p~] 

the point  (z,-5 + p 2 / ( z  - a)) belongs to 12 if and only if the expression on the 

left in (4.1) is positive, t ha t  is, if and only if the expression on the right in (4.1) 
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is positive. This happens if and only if either z �9 A(0, X / ~  - r2) \ A(a, r) or 

z �9 A(a, r) \ ~(0, ~ -  r2). Thus, if 

Dl(a,r) = A(a,r) Cl A(0, ~ -  r2), 

D2(a,r) = C \ [~(a,r) U ~ ( 0 , ~  - r2)], 

D3(a,r) = A(0, ~ -  r 2) \ A(a,r),  

D4(a,r) = A(a,r)  \ ~(0, ~ - r2), 

and 
Vi(a, r) = {(z ,~+ p2/ ( z -a) ) :  z �9 Di(a,r))(1 < i < 3), 

Va(A,r) = {(z,~+ p 2 / ( z -  a)): z �9 D4(a,r) \ {a}}, 

then 1/1 (a, r) and 1/2 (a, r) are the components of Va,r \ ft and V3 (a, r) and V4 (a, r) 

are the components of Va,~ A 12. 

5. Outl ine of  the  proof  of  T h e o r e m  1.1 

We start with a continuous function f on C \ {0} which extends holomorphi- 

cally from every circle which surrounds the origin and the associated function 
F, holomorphic on 12 = {(z,w): Iwl > M}- Suppose that f extends holomor- 

phically from a circle bA(b, r) that does not surround the origin and from all 

nearby circles bA(a, r) with a close to b. Then FIbAb,r has a bounded continuous 

extension F1 to Ab,r U bAb,r which is holomorphic o n  Ab,r, in particular, F1 on 
Ab,rnf~ = V4(b, r). We use the edge of the wedge theorem as in [G3] to show that, 

since f extends holomorphically from all nearby circles bA(a, p), on V4 (b, r), the 

function F11Va(b, r) coincides with FW4(b, r). Since/;'1 is holomorphic on Aa,r, 

it follows that F extends holomorphically along Vb,~ to 1/1 (b, r). Further, using 
again the fact that f extends holomorphically from each circle bA(a, r) where 

a runs through a neighbourhood of b and repeating the process above with b 

replaced by a, we see that F extends holomorphically into a neighbourhood 

P of V1 (b, r) in C 2 . Now we can apply the continuity principle. Vl(b, r) is a 

holomorphically embedded disc which can be continuously deformed through a 

family of holomorphically embedded discs into a holomorphically embedded disc 

lying on the w-axis which contains the origin in its interior, in such a way that 

boundaries of all these discs are contained in f~ U P. This implies that F extends 

holomorphically into a neighbourhood of the origin. This shows that f can be 

defined at 0 so that it becomes a real analytic function in a neighbourhood of 
the origin. By a result from [G2] it follows that f is holomorphic on C, which 

will complete the proof. 
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6. P r o o f  of  T h e o r e m  1.1 

Suppose that  f extends holomorphically from each circle that  surrounds 

the origin. We know that  there is a holomorphic function F on f~ which, 

for each R1, R2,0 < R1 < R2, has a bounded continuous extension to 

12(A(O, R1,R2)) U b~(A(O, R1,R2) which coincides with F(z ,~)  = f ( z )  on 

A(0, R,,  R2) = {(z,~): z E A(0, R1, R2)}. 

Suppose that  b E C,0 < rl < r2 < ]b[ and suppose that  f extends holo- 

morphically from each circle bA(a,p) C A(b, rl ,r2) which surrounds b. No- 

tice that  no such bA(a,p) surrounds the origin. By Theorem 2.1 the function 

F(z,~) = f ( z )  has a bounded continuous extension F1 from A((b, rl ,r2) to 

f~(A(b, rl ,  r2)) U bf~(A(b, rl ,  r2)) which is holomorphic on f~(A(b, r l ,  r2)). 

Let r --- (rl +r2)/2 and consider the circle bA(b, r) and associated varieties Ab,r 

and Vb,r. Note that  ft(A(b, r l ,  r2)) is an open neighbourhood of Ab,r. Recall that  

ft(A(b, r l ,  r2)) is the disjoint union of Aa,~ such that  bA(a, r) C Int A(b, rl ,  r2) 

surrounds b. 

Write Vj = Vj (b, r), 1 < j < 4 and let 

= { (z ,b+  r 2 / ( z -  b)): z e bA(b,r) NA(0, ~ -  r2)}. 

Note that/~ is an arc which is a part of bAb,~ C b~t. Clearly 

w E bA(b, r) n -A(O, V/~l 2 - r 2) if and only if (w, ~)  E A. 

Each such w is contained in two circles, tangent from outside to each other 

at w, one contained in IntA(O, R1,R2) for some R1,R2 ,0  < R1 < R2 < oc, 
and surrounding the origin, and the other contained in Int A(b, rl ,  r2) and sur- 

rounding b. Proposition 2.4 implies that  there are a neighbourhood U C E of 

(w,~),  an open convex cone K C iE with vertex at the origin, and an ~ > 0 

such that  if K n = {Z  C K,  IZI < ~/} then U + K n C ft(A(O, R1,R2)) and 

U - K~ C Ft(A(b, rl ,r2)).  By the edge of the wedge theorem it follows that  

F(z,-2) = f ( z )  has a holomorphic extension (b into a small open ball B C C 2 

centered at (w,~).  Provided that  B is small enough Proposition 3.1 implies 

that  (I) -- F on B fq f~ and (b _-_ F1 on B N f~(A(b, rl,r2)).  Since we can repeat 

the process for every (w, ~)  E A it follows that  there is an open connected neigh- 

bourhood ~2 of A in C 2 such that  Y N f~, ~ A ft(A(b, rl, r2)) and ]; n A(b, rl, r2) 

are connected, such that  F(z,  ~) = f ( z )  has a holomorphic extension (I) to ); 

which satisfies �9 = F on 12 N )2 and (I) = F1 on f~(A(b, rl, r2)) n Y. 

The components V3 and V4 of Vb,~ N 12 are contained in 12, so F is well defined 

and holomorphic on V3 and V4. The function F1 is well defined on components 
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1/1 and V4 of Vb,r \ bl2 which, together with the arc 

{ ( z , b +  rel(z  - b)): z �9 bA(0, X/~  e - r e M A(b,r)},  

form Ab,r. We first show that  on Va, where both F and F1 are defined, thesetwo 

functions coincide. To see this, choose w �9 bA(b,r) \-A(O, ~X/r~ - re). There is 

a disc A(c, R) which contains the origin such that  A(b, r) C A(c, R) and such 

that  bA(c, R) is tangent to bA(b, r) at w. Proposition 2.4 implies that  there are 

an open neighbourhood U C E of (w, ~) ,  an open convex cone K C iE with 

vertex at the origin and an ~ > 0 such that  if K n = {Z �9 / ( , [Z  I < ~7} then 

U + K n C D(A(b, rl, re)) M fl(A(O, R1, R2)) for some R1, Re, 0 < R1 < Re < cc 

and such that  V4 meets U + K n. This implies that  F _= F1 on U + Kv since 

their boundary values F(z,-2) = f (z)  = F1 (z,-2)((z, ~) �9 U) are the same. Since 

1/4 meets U + K n it follows that  F - F1 on V4. 

The arc A is the intersection of the boundaries of V1 and V3 in Vb,~. We show 

that  F1 IV1 is the analytic continuation of FIV3 in Vb,r across Int A. To see this, 

recall that  there are an open neighbourhood ~; C C 2 of A and a holomorphic 

function (I) on 19 such that  (I) - F on ] ; M ~  and �9 ~ F1 on ~M~(A(b ,  rl,re)), 
so there is a single holomorphic function �9 = ~IVb,r M l; on Vb,~ M 1; such that  

q) - F on V3M~; and �9 ---F1 on 1/1N];. 

Thus we showed that  F extends holomorphically into a neighbourhood ]; of 

in C ~ , that  FIV3 U V4 extends holomorphically along Vb,r into a neighbourhood 

of V1 in Vb,~ and that  FIV4 =- F1 IV4. 
We now use the preceding reasoning further to show that  F extends holomor- 

phically to a neighbourhood of ~-1 in C 2 . To see this, we choose a small ~ > 0 

and repeat the process above with Va,~, a �9 A(b, r), in place of Vb,~. Note that  

the union )4; of all Aa,r,a �9 A(b,r), is an open neighbourhood of Ab,~ which, 

provided that  V is small enough, is contained in ~(A(b, rl,re)) and so F1 is 

holomorphic on )4;. Note that  ];U)4; is a neighbourhood of~ll in C 2 . Repeating 

the process above for a �9 A(b,~) in place of b we see that  FIV3(a,r ) U V4(a,r) 
extends holomorphically along V~,~ into a neighbourhood of Vl(a, r) in Va,r. 
However, in )4; all these extensions coincide with F1 so if the function fie on 

]? U )4; is defined as ~]~; = FI]; and ~])A; = FlaY, then if/ is holomorphic on 

~; M W. Thus, F extends holomorphically into Y M )4;, a neighbourhood of V1 in 
C e . 

We will now apply the continuity principle. Recall that  F extends holomor- 

phically into a neighbourhood P of Vii in C 2 . Nowl 

v l  = + r:l(z- b)): z e D l ( b , r ) }  
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is an embedded analytic disc whose boundary 

bV1 = {(z ,b+  r 2 / ( z - b ) ) :  z e bDl (b , r ) }  

is contained in b~t. For each t, 0 < t < 1, let 

Vl,t = {( tz , -b+ r 2 / ( z -  b)): z e D l ( b , r ) } .  

Then Vl,t,0 < t < 1, is a continuous family of embedded analytic discs, V1,1 = 

V1, whose boundaries 

bVl,t = {( tz ,b+  r 2 / ( z  - b)): z E bDl (b , r ) }  

are contained in f~ t2 P (in fact, for 0 <_ t < 1 they are contained in f~). By the 

continuity principle it follows that  F extends holomorphically into a neighbour- 

hood of 

V1,0 : {(O,-b+ r 2 / ( z  - b)): z E D l ( b , r ) }  

in C 2 . It is easy to see that  Vl,o contains the origin. Consequently, F extends 

holomorphically into a neighbourhood of the origin in C 2 and so f extends 

across the origin in C as a function which is real analytic in a neighbourhood 

of the origin. Since f extends holomorphically from every circle surrounding 

the origin it follows from [G2] that  f is holomorphic on C. This completes the 

proof. 

Remark:  In the last step of the proof above we may, instead of [G2], use 

the Liouville theorem as follows: From (2.2) it follows that  F is bounded on 

A(0, (~) • C for some 5 > 0. By the Liouville theorem the function ~ ~ F(z ,  ~) 

is constant for each z C A(0,5) so F does not depend on w on A(0,(~) • C. 

It follows that  F is a function of z only so f ( z )  = F(z , -2) (z  E C \ {0}) is a 

restriction of an entire function to C \ {0}. 

7. Examples 

By Theorem 1.1 the family of all circles that  surround the origin is a maximal 

open family of circles that  is not a test family for holomorphy. Even its closure, 

that  is the family of all circles that  either surround the origin or pass through 

the origin, is not a maximal family that  is not a test family for holomorphy. To 

see this, let a E C, p > 0, lal > p, and let 

g(z)  = ~ 0 if z = 0, 
(z2/~)[(z  - a)(-2 - -5) - p2] if z ~ 0. ( 
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The function g vanishes identically on bA(a, p) and hence extends holomorphi- 

cally from bA(a, p). Since 

( z2 /-2) [ ( z - a ) (-2 - -5) - p2] = 2 3 _ az 2 _ z31 ) + a-a( z2 /-2) _ ( z21- ) 

is a polynomial in z and 1/2 it follows that g extends holomorphically from 

every circle that  surrounds the origin. Since g is continuous on C it extends 

holomorphically also from every circle that  passes through the origin. This 

shows that if [a~[ > Pi > 0, 1 < i < n, then the function 

[" 0 if z = 0 
f (z)  (z2/z)nII~_l[(z - aj)(-2 - -Sj) - p~] if z # 0 

is continuous on C, extends holomorphically from all circles that surround 

the origin, from all circles that pass through the origin, and from all circles 

bA(ai, Pi), 1 < i < n, yet f is not holomorphic. 

In our next example, let g be a function from the disc algebra and define 

(7.1) f ( z )  = g(zl-2) (z �9 C \ {0}). 

Suppose that bA(a,p) surrounds the origin. Then la[ < p and for [~[ = 1 we 

have 

f (a  + ~p) = g k ~ - - ~ p )  = g \ ~ l  + (-5/p)~ ]' 

which shows that the function ~ ~ f (a+~p) (~ �9 bA) extends to a function from 

the disc algebra. Thus, f extends holomorphically from every circle surrounding 

the origin. Since the boundary values of the functions from the disc algebra can 

be highly non-smooth, this example shows that a highly non-smooth function 

on C \ {0} can be holomorphically extendible from every circle surrounding the 

origin. 

8. A n a l y t i c i t y  on  circles  for  f unc t i ons  c o n s t a n t  on  l ines  

In the second example in Section 7 the function f is constant on each line passing 

through the origin, that is, 

(8.1) f ( tz)  = f (z)  (z �9 C \  {0},t �9 I~\ {0}). 

In this section we look more closely at such functions. 

THEOREM 8.1: Suppose that f is a continuous function on C \ {0} that is a 
constant on each line passing through the origin, that is, f satisfies (8.1). I f  f 
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extends holomorphically from one circle surrounding the origin then it extends 

holomorphically from every circle surrounding the origin. This happens if and 

only if there is a function g from the disc algebra such that f (z)  = g(z/~) 

(z e c \ {0}). 

Proof: Suppose that  f is a continuous function on C \ {0} that  satisfies (8.1). 

Then there is a continuous function g on bA such that  

(8.2) f ( z )  = g(z/-~) (z e c \ {0}. 

Assume that  f extends holomorphically from a circle bA(a, p) that  surrounds 

the origin. By (8.1) we may" assume that  p = 1. If a = 0 then the function 

~ g(~2)(~ E bA) extends to a function in the disc algebra, which implies that 

g extends to a function from the disc algebra. Suppose that  a r 0. Composing ] 

with a rotation if necessary we may assume that  0 < a < 1. By our assumption 

there is a function h from the disc algebra such that  

a + ~ )  [ .  a + ~  

Clearly ~ ~ h((~ - t)/(1 - t~)) (~ E bA) extends to a function from the disc 

algebra for every t, 0 < t < 1. Put  t = (1 - ~/1 - a2)/a. Then 0 < t < 1 and 

~--t 
a +  1-~t ~ + t  
l + a ~  l + t ~  

(~ e bA), 

which implies that  

~g(~- t  ~+t~=g((2-t 2 
i---(t f-7 (tJ i -  ? ~  ) (~ ~ hA) 

extends to a function from the disc algebra, which implies that  

~ g ( ( ~ - t 2 ) / ( 1 - t 2 ~ ) )  (~EbA)  

extends to a function from the disc algebra. Consequently, g extends to a 

function in the disc algebra and so f is of the form (7.1). By the discussion 

following (7.1) it follows that  the function f extends holomorphically from every 

circle that  surrounds the origin. 



42 J. GLOBEVNIK Isr. J. Math. 

9. More  examples  

Example9.1: L e t 0 < a <  1 and let ~(~) = (a+~)/[a+~[ ( ~ � 9  bA). Then 

�9 : bA ~ bA is diffeomorphism. Define 

(9.1) f(z) = ~ - l ( z /H  ) (z �9 C \ {0}). 

The function f is continuous on C \ {0} and is constant on each ray emanating 

from the origin, that is, 

(9.2) f ( t z )= f ( z )  ( z e C \ { 0 } , t > 0 ) .  

If an f satisfying (9.2) extends holomorphically from a circle bA(a, p) that 

surrounds the origin, then it extends holomorphically from bA(ta, tp) for ev- 

ery t > 0. So, when studying holomorphic extendibility from circles bA(a, p) we 

may, with no loss of generality, assume that p = 1. 

Let f be as in (9.1). Since 

f ( a + ( ) = a 2 - ' ( ( a + ( ) / [ a + ( I ) = (  (( EbA) 

it follows that f extends holomorphically from bA(a, 1). By (9.2) 

l a ~ l  (a + ()(a +~)  = + 7 - -  l + a (  (( e bA); 

it follows that 

extends to a function from the disc algebra which happens if and only if 

~ f M (~) i-+--a-~(() ] 

extends to a function from the disc algebra for an automorphism M of A. In 

particular, if M(r = (( - a)/(1 - a() it follows that 

extends to a function from the disc algebra which is equivalent to the fact that 

f extends holomorphically from bA(-a, 1). It will follow from Theorem 10.1 

that these two circles are the only circles of radius 1 from which f extends 

holomorphically. 
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Example 9.2: Let g be a function in the disc algebra which is not an even 

function. Let f(z) = g(z/H)(z �9 C \  {0}). Then f is continuous on C \  {0} and 

extends holomorphically from bA(0, 1). It will follow from Theorem 10.1 below 

that bA(0, 1) is the only circle of radius 1 from which f extends holomorphically. 

10. Analy t ic i ty  on circles for funct ions  cons tan t  on rays  

In both examples in Section 9 the function f satisfies (9.2), that is, f is constant 

on each ray emanating from the origin. In this section we look more closely at 

such functions. 

Suppose that a continuous function f on C \ {0} satisfies (9.2). Assume that 

0 _< d < 1 and that f extends holomorphically from bA(de i~, 1) for some a �9 l~. 

This means that ~ ~ f(ei~(d + 4))(~ �9 bA) extends to a function in the disc 

algebra. Since 

ei~(d + r + r = ei"~/~( d + 4)/(1 + de) (4 �9 bA) 

this happens if and only if 

(10.1) ~ f(eiC~V/~(d+ 4)/(1 + d~)) = q({) (4 �9 hA) 
[ where q belongs to the disc algebra. 

In the case when d = 0 this implies that ~ ~ f(4)(4 �9 bA) extends to a function 

from the disc algebra. Suppose that d # 0. Put 

{ - t  1 -  v q - -  d 2 
- where t - 

1 - t~  d 

to get 
d + 4 ~2 _ t 2 

4 l  + d~ - 1 -  t2~ 2' 

so that (10.1) is equivalent to 

(10.2) { f ( e i a ~ )  = G(~) (~E bA) 
where G belongs to the disc algebra. 

In fact, G(~) = q((~ - t)/(1 - t~))(~ E bA). Putting 

z = e ~ v / ( ~ 2  - t 2 ) / ( 1  - t 2 ~ 2 )  

we get 
(e-i~Z) 2 + t 2 ~2 
1 + t2(e-i~Z) 2' 
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which implies that  (10.2) is equivalent to 

~[  -ic~ / Z2+e2'"t 2 ) f (Z)  = ,_,~,e _Vl+e-""t 'z  2. (Z �9 bA) (10.3) 
where G belongs to the disc algebra. 

THEOREM 10.1: Let f be a continuous function on C\ {0} which satisfies (9.2), 
that is, f is constant on each ray emanating from the origin. Suppose that 
f extends holomorphicedly from bA(a, 1) and bA(b, 1) where a, b �9 A, b ~ a, 

b r - a .  Then there is a function g in the disc Mgebra such that 

(10.4) f(z) = g(z/]zl) (z �9 C \ {0}). 

Consequently, f satisfies (8.1), that is, f is constant on each line passing through 
the origin and extends holomorphically from each circle surrounding the origin. 

Proof: Suppose that  f extends holomorphically from bA(dlei~l,1) and 

bA(d2eia2,1) where 0 _< d~ < 1 (i = 1,2), d2e m2 r die ic~l, d2e ia2 7 ~ -d ie  i~1. 
It is enough to prove that  f is an even function, for then the rest follows from 

Theorem 8.1. 

Let ti = 0 i f d i  = 0 and ti = ( 1 -  X /1 -d~) /d i  i fd i  r 0, i = 1,2. Write 

Ai = e2ic~'t'~, i = 1,2. By the discussion preceding Theorem 10.1 there are 

functions G1,62 in the disc algebra such that  

( ~ Z 2 t - A i ~  
(10.5) I(Z) -- a~ e -~a' (Z �9 bA,i = 1, 2). 

1 + )-~--~ / 

Write W 2 = (Z 2 + A1)/(1 + TllZ 2) so that  Z 2 = (W 2 - A1)/(1 - T11W 2) 

(W �9 bA) and (Z 2 + A2)/(1 +)--~2Z 2) = (W 2 + C)/(1 + C,W 2) where C = 

(A2 - A1)/(1 - AIA2). Now (10.5) implies that 

G1 e '~1 1-;~11-~-2] = G2 e - ~  1 + N Z  -2 ] (Z �9 bA), 

which implies that  

/100  

Since both G1 and G2 belong to the disc algebra it follows that the relation 

(10.6) continues holomorphically inside A, so (10.6) implies that  either C = 0 

or G2 is an even function. Assume that  C = 0. By (10.6) it follows that  A~ = A2 
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and e ~1 = e ~2. It follows that d2e i~2 = •  i ~ ,  which is impossible by the 

assumption. Thus, G2 is an even function and consequently, by (10.5), f is an 

even function. This completes the proof. 

Remark: Note that Theorem 10.1 implies that in Example 9.1 the circles 

hA(a, 1) and bA(-a,  1) are the only circles of radius one from which f extends 

holomorphically. Similarly, in Example 9.2, bA is the only circle of radius one 

from which f extends holomorphically. 
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